GARM: Generalized Association Rule Mining
نویسندگان
چکیده
A thorough scrutiny of the literature dedicated to association rule mining highlights that a determined effort focused so far on mining the co-occurrence relations between items, i.e., conjunctive patterns. In this respect, disjunctive patterns presenting knowledge about complementary occurring items were neglected in the literature. Nevertheless, recently a growing number of works is shedding light on their importance for the sake of providing a richer knowledge for users. For this purpose, we propose in this paper a new tool, called GARM, aiming at building a partially ordered structure amongst some particular disjunctive patterns, namely the disjunctive closed ones. Starting from this structure, deriving generalized association rules, i.e., those offering conjunctive, disjunctive and negative connectors between items, becomes straightforward. Our experimental study put the focus on the mining performances as well as the quantitative aspect and proved the utility of the proposed approach.
منابع مشابه
Effective Rule Based Classifier using Multivariate Filter and Genetic Miner for Mammographic Image Classification
Mammography is an important examination in the early detection of breast abnormalities. Automatic classifications of mammogram images into normal, benign or malignant would help the radiologists in diagnosis of breast cancer cases. This study investigates the effectiveness of using rule-based classifiers with multivariate filter and genetic miner to classify mammogram images. The method discove...
متن کاملA new method for finding generalized frequent itemsets in generalized association rule mining
Generalized association rule mining is an extension of traditional association rule mining to discover more informative rules, given a taxonomy. In this paper, we describe a formal framework for the problem of mining generalized association rules. In the framework, The subset-superset and the parent-child relationships among generalized itemsets are introduced to present the different views of ...
متن کاملFast Algorithm for Mining Generalized Association Rules
In this paper, we present a new algorithm for mining generalized association rules. We develop the algorithm which scans database one time only and use Tidset to compute the support of generalized itemset faster. A tree structure called GIT-tree, an extension of IT-tree, is developed to store database for mining frequent itemsets from hierarchical database. Our algorithm is often faster than MM...
متن کاملFast Algorithms for Mining Generalized Frequent Patterns of Generalized Association Rules
Mining generalized frequent patterns of generalized association rules is an important process in knowledge discovery system. In this paper, we propose a new approach for efficiently mining all frequent patterns using a novel set enumeration algorithm with two types of constraints on two generalized itemset relationships, called subset-superset and ancestor-descendant constraints. We also show a...
متن کاملMaintenance of Generalized Association Rules for Record Deletion Based on the Pre-Large Concept
In the past, we proposed an incremental mining algorithm for maintenance of generalized association rules as new transactions were inserted. Deletion of records in databases is, however, commonly seen in real-world applications. In this paper, we thus attempt to extend our previous approach to solve this issue. The proposed algorithm maintains generalized association rules based on the concept ...
متن کامل